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In the assay of multicomponent systems by ultraviolet spectro- 
photometry, it is possible to improve accuracy and precision and 
also to obtain various statistical criteria by considering data over the 
range of wavelengths concerned. A linear least squares approach 
has been programmed to analyse mixtures of drugs in the presence or 
absence of known background. When the background was unknown 
but could be assumed of simple form, a non-linear alternative was 
successful. 

Assay of pharmaceutical dosage forms may be performed by measurement of a 
multicomponent ultraviolet spectrum after dissolution and filtration and also by 
physical separation followed by individual component assays. 

An obvious advantage of the multicomponent spectrum approach is simplicity. 
The process is easily learnt and there is less chance of something going wrong. 
Generality is another feature, meaning that new techniques with certain specific 
conditions need not be catered for with different preparations. Since there are less 
preparative steps involved than with many other methods, inaccuracies and assump- 
tions have less chance of being propagated into serious errors. Associated with 
this is the favourable number of samples that can be processed in a given time. 
The pure spectra need only be determined once and placed in a library, reducing 
experimental effort still further. The apparatus is simple, with most quality control 
laboratories possessing an ultraviolet spectrophotometer, but not necessarily a gas 
chromatograph, spectrophotofluorimeter or polarograph. An important advantage 
is the ease of automation. There are various data logging systems now available 
(Larsen, 1973) with paper tape output which can be fed into a central computer 
error free. Even better, with the advent of the mini-computer, an on-line system 
can be contemplated. 

Consequently there has been a good deal of interest in this type of assay. By 
using data over the whole wavelength range, Lubbers & Wodick (1969) were able 
to determine to approximately rtl% the individual concentrations of mixtures 
of four nucleotides in biological material. Glenn (1963) described the use of ortho- 
gonal polynomials to correct for irrelevant absorption in two component analysis, 
and since then there have been many reports of this technique in the pharmaceutical 
literature (Wahbi & Farghaly, 1970; Abdine, Wahbi & Korany, 1971, 1972; Wahbi 
& Abdine, 1973). With such an approach there is the advantage that the parameters 
enter linearly into the mathematics and so can be included in the linear regression. 

However, with the non-orthogonal least squares approach adopted in this paper, 
it was found that polynomial representation of known background was not good, 
and a Gaussian curve was finally selected for this purpose. 
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Theory 

predicted absorbance at any wavelength can be estimated by equation 1 : 
In an ideal case, the background is assumed or found to be negligible, so that the 

Yi pred = a, + a,X,i + a2X2i + . . . aj Xji . . - * (1) 
where aj are the unknown concentrations of each of the j active ingredients and Xj1 
are the known pure spectra for these same components. The sum of squares of the 
deviations between the given (Yi m) and predicted absorbance values (Yi pred) over 
all the wavelengths used can be minimized analytically from a developed 
set of linear simultaneous equations, giving the required concentration terms a]. 
The a, term should be zero if the experimental technique is perfect, but its inclusion 
in the regression was always found in practice to improve the accuracy and precision 
of the concentration estimates (as will be shown later). 

It should be realized that equation 1 can still be used when the background (diluent, 
lubricant, binder, preservative or whatever) spectrum is known. This means there 
will be one more term in equation 1 which allows for such background, but for which 
there will not be the same interest in the concentration estimate. 

For dosage forms where the background is a mixture of excipients, there may be 
variation in the relative proportion of each of these additives from batch to batch, 
in addition to variation in the total amount. Where this applies, use of a fixed 
spectrum (Xji) could lead to errors. With a variety of practical cases over a small 
wavelength range, it was found that the background was unimodal and could be 
adequately characterized by part of a Gaussian curve. The parameters of this 
curve produce non-linear equations which must be solved by a slower iterative process 
but then one may bypass ever having to determine experimentally the background 
spectrum. 

Computation details 
The linear equations were solved by matrix inversion using the double precision 

form of a standard IBM subroutine (MINV).* With approximately fourteen 
significant decimal digits, there was no evidence for concern over rounding errors 
with even the most poorly resolved systems and up to fifth order matrices. For the 
non-linear function minimization, a subroutine FUNMIN was written based on the 
Adaptive Simplex approach of Nelder & Mead (1965). Concentration standard 
deviations were estimated by the method of Kendall & Stuart (1961). The com- 
puted vector of parameter uncertainties was a sensitive indicator of approaching 
matrix singularity, so that long before significant errors occurred in the concentration 
estimates, they would be rejected because of high predicted relative standard 
deviations. 

The Durbin-Watson statistic for serial correlation of residuals was estimated as 
described in Christ (1966) using equation 2 : 

d = ' = =  .. .. .. - '  (2) 

IBM Systeml360 Scientific Subroutine Package, 1967. 
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where €1 is the ith predicted residual and n is the sample size. The distribution of d 
is symmetrical with a mean of 2 and rejection levels depend on the number of residuals 
and the number of parameters in the system. Inspection of equation 2 shows that 
if many neighbouring residuals are of the same sign (defined as positive serial corre- 
lation) then the sum of these terms will be small, and d will be small. In this work 
a one-tailed test for positive serial correlation only was used. 

An IBM 7040 computer was used for the calculations and the program was written 
in FORTRAN 1V.t 

M A T E R I A L S  A N D  M E T H O D  

Sulphacetamide (I), sulphadimidine (11) and sulphathiazole (III) were recrystallized 
from ethanol-chloroform to give melting points of 177-9", 197-9" and 170-2" 
respectively. Colour tests and infrared spectra agreed with those listed in Clarke 
(1969), confirming identity. Acacia and lactose were of B.P. standard, while all 
other chemicals were of reagent grade. Spectrophotometric measurements were made 
with a Perkin-Elmer Model 124 double beam instrument and recorder using 1 cm 
quartz cells. Absorbance readings of the pure solutions and mixtures were taken at 
2 nm intervals in the range 314-232 nm, unless otherwise indicated. These readings 
were automatically corrected for zero error between cells by the program. 

For the first set of experiments, three one litre solutions in 0 . 0 5 ~  sodium hydroxide 
were prepared, containing 13.35, 12.46, and 13.2 mg of I, I1 and I11 respectively. 
These solutions were then accurately mixed in all meaningful permutations of the 
following proportions:- 3,3,4; 2,4,4; 1,4$,4&; 2$,2&,5; 1&,1&,7 and 1,3,6 giving 21 
mixtures for subsequent analysis, for which the individual component concen- 
trations were known accurately. To rapidly test the performance of the program 
in resolving active ingredients when in the presence of unknown background, a wide 
range of possible excipient backgrounds was drawn by hand on graph paper (Fig 2). 
For each case, the absorbances were then read off and numerically added into the 
21 mixture spectra. 

For the second set of experiments, 3g of lactose and 750 mg of acacia were included 
in 3 litres of 0 . 0 5 ~  sodium hydroxide. From this, three one litre solutions containing 
respectively 12.1, 11.6 and 11.7 mg of I, I1 and I1 were made. Ratios for these 
three solutions, in all meaningful permutations were 3,3,4 and 2,2,6 giving 6 synthetic 
mixtures. 

In order to condense the numerous assay results and enable objective comparisons 
of different approaches to be made, the following procedure was adopted. The 
fractional error was given by equation 3 : 

predicted concn - true concn 
true concn Fractional error = x 100 (3) 

For a given component in a series of assays, the variation of the fractional error 
about a mean was expressed as a standard deviation. The mean fractional error 
and its standard deviation were then combined to give the total error below. 

standard 
deviation (4) 

absolute value of mean 
fractional error Total error = + 2 x  

t A listing is obtainable on request. 
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McFarren, Lishka 8z Parker (1970) have previously recommended a similar criterion 
for single valued concentration assays. 

RESULTS AND DISCUSSION 

The spectra of the three sulphonamides are shown in Fig. 1. They were chosen 
for the initial program development because they presented a poorly resolved situ- 
ation; the assumption of negligible chemical interaction necessary for absorbances 

.2  

0 
230 2LO 250 260 270 280 290 300 310 320 

Wavelength Inm) 

FIG. 1. Absorption spectra of the three sulphonamides in 0 . 0 5 ~  sodium hydroxide. - 
sulphacetamide, 13.35 mg litre-l:--- sulphadimidine, 12.46 mglitre-'and---ssulphathiazole, 
13-2 mg litre-l. 

Table 1. Assay errors using diferent approaches over 21 solutions. Rows 1 and 2 
show that generally the least squares procedure produces better estimates 
than the single point method. Rows 3 and 4 compare the two methods for 
robustness in the presence of spurious background. Rows 5 and 6 compare 
estimates when a blank term is included and absent respectively, over a 
wider wavelength range. When a, was included in the range 240-272 nm, 
the high total errors shown in Row 7 were obtained. The last row shows 
results for a linear solution when the added background was known (curve 
B in Fig. 2). 

Method 
1 Least SQ 
2 Unique 
3 Least SQ 
4 Unique 
5 Least SQ 
6 Least SQ 
7 Least SQ 
8 TLeast SQ 

Constant 
term in 

regression 
No 

No 
- 

Yes 
No 
Yes 
Yes 

Total errors in percentages 

Sulpha- 
cetamide 

7.3 
13.2 
15.4 
23.0 

7.1 
16.0 
39.3 
4-4 

Sulpha- 
dimidine 

14.5 
18.9 
34.4 
51.0 
9.9 

17.4 
63.4 
3-7 

Sulpha- 
thiazole 

3-8 
5.1 

10-3 
8.1 
2.5 
4.6 

46.8 
4.0 

Wavelength 
range 
(nm) 

240-272 
230, 256, 280 
240-272 
230, 256, 280 
232-314 
232-314 
240-272 
232-314 
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of pure spectra to be additive was more likely to be valid for these similar species 
and because the problem had some pharmaceutical relevance. 

Rows 1 and 2 of Table 1 compare the total error over the 21 solutions for the least 
squares method using equation 1 without the a, term in the range 240-272 nm with 
the three point approach using absorbances at 230, 256 and 280 nm. The relation 
of the total errors in Rows 1 and 2 to the more familiar mean fractional error and 
standard deviation is shown in Table 2. Notice that for two of the components, 
the total error has virtually been halved, and in the other it is sigdcantly reduced. 
On this basis alone, the least squares approach considering 17 pts instead of 3 could 
probably be justified for routine analysis in quality control. 

Table 2. The contribution of accuracy and precision components to the total errors 
listed in Rows I and 2 of Table 1 .  All figures are percentages. 

Method Sulphacetamide Sulphadimidine Sulphathiazolc 
Least squares 

Total error 7.3 
Mean fractional error -2.7 

14-5 3.8 
4.1 1 -0 

Standard deviation 1 2 . 3  f 5.2 f 1.4 

Unique 
Total error 
Mean fractional error 
Standard deviation 

13.2 

f 5.0 
- 3.2 

18.9 
2.3 

f 8.3 

However, there are other features which also support the current approach. 
Concentration uncertainties are calculated so that the analyst can quote results with 
95% confidence intervals. With a unique solution, the analyst has to accept the 
results without ever knowing whether he has gone too far, or not far enough. Also 
with a unique solution the total error is dependent on the analyst successfully choosing 
the best wavelengths. While this may be easy for two well resolved spectra, it 
becomes increasingly difficult as resolution deteriorates and the number of components 
increases. With the least squares approach, no such decision is necessary as data 
are taken uniformly over the whole range. Another feature in favour of the present 
technique is that recording or transcription errors can be detected as commonly 
they will be outside 2-3 error standard deviations. With the simpler treatment, 
no such check is possible. Finally the least squares regression is also a semi-qualita- 
tive test. If there is additional background absorbance somewhere in the range, 
then the fit is not good, concentration uncertainties increase, and the probability 
that the regression residuals will be random decreases. The Durbin-Watson statistic 
is a quantitative measure of this randomness, and allows acceptance or rejection in the 
usual probability statements. 

With more information on the spectra, one would expect that a least squares 
regression would produce concentration estimates more stable to non-ideal situations. 
Rows 3 and 4 in Table 1 show the effect of not correcting for zero error in the mixture 
spectra (less than f -005 absorbance units), bearing out this contention. Neverthe- 
less, the large increase in total error does stress how important it is that the back- 
ground be accurately known. 

The best conditions found for assay of these data were with a wavelength range of 
232-314 nm and the inclusion of the a, term in equation 1. Row 5 shows the sub- 
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stantial reduction in total error achieved for the component hardest to estimate, 
sulphadimidine. For comparison, the data in Rows 6 and 7 were included. To- 
gether with Rows 1 and 5, they show that inclusion of a blank term (a,) was only 
beneficial when the whole spectrum was covered, and that without such a term, it was 
better to use only data with high signal to noise ratio (240-272nm). With these 
findings, subsequent work was done from 232-314nm with a, included in the 
regressions. 

Fig. 2 shows the various backgrounds added into the mixture spectra for the com- 
puter simulations. Curve B was selected to illustrate the case of assaying for these 
sulphonamides in the presence of a known background. There were five unknowns 
in this linear regression; the three sulphonamides, the a, term and the background 
concentration. The last two were of no real interest, but their inclusion improved 
the sulphonamide estimates considerably (last row, Table 1). 

Iterative estimates found in the presence of the backgrounds from Fig. 2 are 
summarized as total errors in Table 3. Rows 1, 2 and 4, 5 show that, as expected, 
the smaller the background to signal ratio, the better the Gaussian approximation; 

230 2LO 250 260 270 280 290 300 310. 
Wavelength (nm) 

FIG. 2. Hand drawn backgrounds which were included in the mixture spectra for the computer 
simulations testing program performance. Curve F was an exact straight line. Curve G was 
included to show the consequences if the background cannot be adequately represented. 

Table 3. Total error in the determination of each of the sulphonamides in mixtures 
with varying backgrounds. 

1 
2 

3 
4 
5 

Background 
curve 

A 
A 
10 
- 

B 
C 
C 
10 
- 
D 
E 
F 
G 

Total error as percentage 

Sulphacetamide Sulphadimidine 
12.6 18.9 
7.1 13.6 

11.1 
25.2 
5.0 

18.9 
5.5 
5.9 
57 

7-2 
47.3 
11.4 

34.3 
39.1 
12.6 
200 

Sulphathiazole 
8.0 
5.9 

9.9 
46.5 

6.5 

14.2 
21.8 
8.0 
152 
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and therefore the better the active ingredient estimates. However, it is not necessary 
to fix arbitrary levels of signal to background ratio for good estimates, as these 
levels depend on many factors, and a final decision on assay feasibility is probably 
best made by the computer. For the systems studied so far, and within the error 
levels presented, there are adequate checks to prevent acceptance of invalid estimates. 

Curve E illustrates the case with a large background absorbance, but since it is 
very dissimilar to the pure species, it can still be accurately allowed for. The results 
for Curve F show that under favourable circumstances, the program can even allow 
for an inclined perfect straight line. The last curve is atypical, but was included to 
show that the assumption of a unimodal background for one that is in fact more 
complex leads to intolerable errors. Needless to say, the investigator is warned 
not to accept these estimates. 

The number of estimates accepted to those rejected can be made a compromise, 
j based on the maximum assay error tolerated. For example, Table 4 presents the 
improved total errors attained with the data of Table 3, by discounting the whole 
regression when the probability of the residuals being random was less than 5%, 
and when individual concentration estimates were rejected if their relative standard 
deviations were greater than 5 %. These results imply that even when an individual 
component in a mixture cannot be estimated with this approach, it does not necessarily 
jeopardize accurate assay of the other components. 

Table 4. The total errors can be improved by adjusting acceptance levels and rejecting 
those regressions and concentration estimates predicted outside these limits. 
In the first row, 16 of the 21 regressions were considered acceptable on 
residual analysis, and of the remaining 48 concentration estimates, 36 had 
predicted relative standard deviations of less than 5 %. 

Background 
curve 

A 
A 
10 
B 
C 
C 
10 
D 
E 
F 
G 

- 

- 

Number of 
regressions 

accepted 
16 
21 

17 
1 
14 

13 
10 
19 
0 

Total error as percentages 
Number of 
estimates Sulpha- 
accepted cetamide 

36 12.9 
50 4.9 

31 6.2 

33 3.7 
- 3 

25 8-7 
17 5-1 
49 4.7 

- 0 

Sulpha- 
dimidine 

11.1 
8.2 

5.3 

7.6 
- 

8.0 
15-9 
7.8 
- 

Sulpha- 
thiazole 

2.9 
2.6 

6.3 

3.5 

8.8 
17.3 
6.9 

- 

- 

Total errors for the lactose-acacia background, together with the average exe- 
cution time per mixture for the IBM 7040 are shown in Table 5. Notice that when 
the non-linear approach is used, the background need never be determined and that 
concentration estimates are more reliable, but that these two advantages are at the 
cost of increasing processing time. 
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Table 5. Comparison of total errors and execution times with the lactose-acacia 
background for the non-linear and linear treatments. 

Total errors as percentages 
Sulpha- Sulpha- Sulpha- Execution time 

cetamide dimidine thiazole per mixture 
Linear 

Non-linear 
(background 
unknown 6.5 5.4 5.8 56 s 
Gaussian 
approximation) 

(background known) 7.3 22.6 16.3 18 s 

Additional points 
The program was arranged to routinely print out the sum of the squared residuals 

at each wavelength for all the solutions treated in the batch, so that an error in one 
of the pure spectra is magnified over all the solutions, and very easiliy traced. For 
a valid series of regressions, this column should be approximately uniform over the 
whole range. If this is the case, it would imply that for the concentrations assayed, 
chemical interaction does not affect the ultraviolet spectra. The lower wavelength 
limit for absorbance reproducibility or instrument response linearity is also readily 
found from this column. A contour diagram showing the sum of squares versus 
the two non-linear variables is also printed out for non-linear regressions, enabling a 
decision on whether the minimum is unique or false. 
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